Система лінійних рівнянь

Система m лінійних рівнянь з n невідомими це система виду: де a ij і b i (i=1,…,m; b=1,…,n) – деякі відомі числа, а x 1 ,…,x n – невідомі числа.

 

Система m лінійних рівнянь з n невідомими це система виду:

 

Лінійні рівняння. Система лінійних рівнянь.

 

де aij і bi (i=1,…,m; b=1,…,n) – деякі відомі числа, а x1,…,xn – невідомі числа. В позначенні коефіцієнтів aij індекс i визначає номер рівняння, а другий j – номер невідомого, у якого розташований цей коефіцієнт.

 

Однорідна система – коли всі вільні члени системи дорівнюють нулю (b1 = b2 = … = bm = 0), зворотна ситуація — неоднорідна система.

Квадратна система – коли число m рівнянь дорівнює числу n невідомих.

Рішення системи — сукупність n чисел c1, c2, …, cn, таких, що підстановка всіх ci замість xi в систему перетворює всі її рівняння в тотожності.

Спільна система – коли у системи є хоч би 1-але рішення, і несовместная система, коли у системи немає рішень.

 

У спільній системи такого виду (як наведено вище, нехай вона буде (1)) може бути одне або більше рішень.

Рішення c1(1), c2(1), …, cn(1) і c1(2), c2(2), …, cn(2) сумісної системи типу (1) будуть різними, коли не виконується навіть 1-але з рівностей:

 

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

 

Спільна система типу (1) буде певною, коли у неї є тільки одне рішення; коли у системи є хоча б 2 різних рішень, вона стає недоопределенной. Коли рівнянь більше, ніж невідомих, система є переопределенной.

 

Коефіцієнти при невідомих записуються як матриця:

 

Лінійні рівняння. Система лінійних рівнянь.

Вона називається матрицею системи.

 

Числа, що стоять в правих частинах рівнянь, b1,…,bm є вільними членами.

 

Сукупність n чисел c1,…,cn є розв’язком цієї системи, коли всі рівняння системи звертаються в рівність після підставки до них чисел c1,…,cn замість відповідних невідомих x1,…,xn.

 

При розв’язанні системи лінійних рівнянь можуть виникнути 3 варіанти:

 

1. У системи є тільки одне рішення.

 

2. У системи є нескінченне число рішень. Наприклад, Лінійні рівняння. Система лінійних рівнянь.. Вирішенням цієї системи будуть всі пари чисел, які відрізняються знаком.

3. У системи немає рішень. Наприклад, Лінійні рівняння. Система лінійних рівнянь.. , якщо б рішення існувало, то x1 + x2 дорівнювало б в один час 0 і 1.

 

Методи рішення систем лінійних рівнянь.

 

Прямі методи дають алгоритм, за яким знаходиться точне рішення СЛАУ (систем лінійних алгебраїчних рівнянь). І якби точність була абсолютною, вони б знайшли його. Реальна електро-обчислювальна машина, звичайно, працює з похибкою, тому рішення буде приблизними.

Ітераційні методи ґрунтуються на використанні повторюваного процесу і дозволяють отримати рішення в результаті послідовних наближень.

 

Найбільш популярні способи розв’язання систем лінійних рівнянь.

 

  • 1. Матричний метод розв’язування систем лінійних рівнянь.
  • 2. Правило Крамера.
  • 3. Метод Гауса.
  • 4. Методом підстановки.
  • 5. Методом почленного складання.
  • 6. Методом обертання.
  • 7. Метод прогонки.
ПОДІЛИТИСЯ:

Дивіться також:
Різниця чисел